Reversibility, Continued Fractions, and Infinite Meander Permutations of Planar Homoclinic Orbits in Linear Hyperbolic Anosov Maps
نویسنده
چکیده
Meander permutations have been investigated in the context of Gauss words, singularity theory, Sturm global attractors, plane Cartesian billiards, and Temperley-Lieb algebras, among others. In this spirit we attempt to investigate the difference of the orderings of homoclinic orbits on the stable and unstable manifolds of a planar saddle. As an example we consider reversible linear Anosov maps on the 2-torus, and their relation to continued fraction expansions.
منابع مشابه
Reversibility, Continued Fractions, and Infinite Meander Permutations of Planar Homoclinic Obits in Linear Hyperbolic Anosov Maps
Meander permutations have been encountered in the context of Gauss words, singularity theory, Sturm global attractors, plane Cartesian billiards, and Temperley-Lieb algebras, among others. In this spirit we attempt to investigate the difference of orderings of homoclinic orbits on the stable and unstable manifolds of a planar saddle. As an example we consider reversible linear Anosov maps on th...
متن کاملCascades of homoclinic orbits to a saddle-centre for reversible and perturbed Hamiltonian systems
The bifurcation of double-pulse homoclinic orbits under parameter perturbation is analysed for reversible systems having a homoclinic solution that is biasymptotic to a saddle-centre equilibrium. This is a non-hyperbolic equilibrium with two real and two purely imaginary eigenvalues. Reversibility enforces that small perturbations will not change this eigenvalue connguration. It is found that (...
متن کاملBifurcations and Strange Attractors
We reviews the theory of strange attractors and their bifurcations. All known strange attractors may be subdivided into the following three groups: hyperbolic, pseudo-hyperbolic ones and quasi-attractors. For the first ones the description of bifurcations that lead to the appearance of Smale-Williams solenoids and Anosov-type attractors is given. The definition and the description of the attrac...
متن کاملSmooth Conjugacy and S{r{b Measures for Uniformly and Non-uniformly Hyperbolic Systems
We give a new proof of the fact that the eigenvalues at correspondig periodic orbits form a complete set of invariants for the smooth conjugacy of low dimensional Anosov systems. We also show that, if a homeomorphism conjugating two smooth low dimensional Anosov systems is absolutely continuous , then it is as smooth as the maps. We furthermore prove generalizations of thse facts for non-unifor...
متن کاملIntegrable Structures for 2D Euler Equations of Incompressible Inviscid Fluids
The governing equation of turbulence, that we are interested in, is the incompressible 2D Navier– Stokes equation under periodic boundary conditions. We are particularly interested in investigating the dynamics of 2D Navier–Stokes equation in the infinite Reynolds number limit and of 2D Euler equation. Our approach is different from many other studies on 2D Navier–Stokes equation in which one s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- I. J. Bifurcation and Chaos
دوره 24 شماره
صفحات -
تاریخ انتشار 2014